
 

www.astesj.com     642 

 

 

 

 

Incorporating Spatial Information for Microaneurysm Detection in Retinal Images 

Mohamed M. Habib1, Roshan A. Welikala1, Andreas Hoppe1, Christopher G. Owen2, Alicja R. Rudnicka2, Adnan Tufail3,  

Catherine Egan3, Sarah A. Barman*1 

1 School of Computer Science and Mathematics, Faculty of Science, Engineering and Computing, Kingston University, London, UK 

2 Population Health Research Institute, St. George's, University of London, United Kingdom 

3 Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom 

A R T I C L E  I N F O  A B S T R A C T 

Article history: 

Received : 07 April, 2017  

Accepted : 12 May, 2017 

Online: 04 June, 2017 

 The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of 

Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working 

population worldwide. This paper introduces a novel algorithm that combines information 

from spatial views of the retina for the purpose of MA detection. Most published research 

in the literature has addressed the problem of detecting MAs from single retinal images. 

This work proposes the incorporation of information from two spatial views during the 

detection process. The algorithm is evaluated using 160 images from 40 patients seen as 

part of a UK diabetic eye screening programme which contained 207 MAs. An improvement 

in performance compared to detection from an algorithm that relies on a single image is 

shown as an increase of 2% ROC score, hence demonstrating the potential of this method.  
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1. Introduction 

This paper is an extension of the algorithm originally presented 

in the International Conference on Signal Processing Theory and 

Applications (IPTA 2016) [1]. This work adds a combination of 

spatial information from two retinal images for microaneurysm 

(MA) detection. Diabetic Retinopathy (DR) is one of the most 

common causes of blindness among working-age adults [2]. Signs 

of DR can be detected from images of the retina which are captured 

using a fundus camera. Microaneurysms (MAs) are one of the 

early signs of DR. Several algorithms for automated MA detection 

from single 45 degree fundus images have been proposed in the 

literature. However, in many Diabetic Eye Screening Programmes, 

including the UK National Health Service Diabetic Eye Screening 

Programme (NHS DESP) [3], at least 2 views of the retina are 

captured including both optic disc centered view and the fovea 

centered images (Figure 1). These images overlap together and 

thus have common MAs that appear in both views (with variability 

in contrast). Despite the availability of both views, the algorithms 

that have been proposed have only taken into account the 

information contained in a single image. In this paper an increase 

in detection accuracy is achieved by fusing the information from 

two views of the retina. 

Algorithms reported in the literature lie broadly in two 

categories: supervised and unsupervised techniques. Supervised 

techniques make use of a classifier to reduce the number of false 

detections. This classifier requires training on an additional 

training set in order to generate a classification model. 

Unsupervised methods do not require a classifier and hence no 

training step is needed.  

 

Figure 1. a) A conceptual diagram of the 2 spatial views of the retina (optic 

disc and fovea centered). The patches in b) and c) demonstrate how the same 

microaneurysm in different views of the retina can have a varying level of 

contrast.   

The majority of the proposed methods in the literature fall 

under the supervised category. Most of the algorithms consist of 

three main stages: 1) Preprocessing 2) MA Candidate Detection 

and 3) Classification. The preprocessing phase corrects the image 
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with respect to non-uniform illumination and enhances MA 

contrast. MA Candidate Detection detects an initial set of 

candidates that are suspected to be MAs. While it is possible to 

stop here and report the detected results, a third phase is usually 

included in the algorithm to reduce the amount of false positives. 

This is the candidate classification phase and it classifies the 

detected candidates from phase 2 as either true or spurious.  

A variety of classification techniques have been reported in the 

literature such as Linear Discriminant Analysis (LDA) [4] K-

Nearest Neighbours (KNN) [5]–[8], Artificial Neural Networks [9], 

[10], Naive Bayes [11] and Logistic Regression [12]. There are a 

number of unsupervised methods that do not rely on a classifier 

include [13]–[16]. The obvious advantage of an unsupervised 

method is that they do not require a training phase. Some initial 

candidate detection methods that have been proposed are Gaussian 

filters [4]–[6] or their variants [8], [17], [18], simple thresholding  

[15], [16], [19], Moat operator [20], double ring filter [9], mixture 

model-based clustering [21] 1D scan lines [13], [14], extended 

minima transform [11], [22], Hessian matrix Eigenvalues [7], [23], 

Frangi-based filters [24] and hit-or-miss transform [10].  

All the aforementioned methods were based on detection from 

a single colour image. Even though extra information may be 

available from another view of the retina, these algorithms are not 

designed to incorporate this extra information. A few methods 

have addressed the problem of detecting or measuring change from 

multiple images for the purpose of disease identification. Conor 

[25] performed vessel segmentation on a series of fundus images 

and measured both vessel tortuosity and width in these images. 

This was done in order to find a correlation between these 

measures and some signs including Diabetic Retinopathy.  Arpenik 

[26] used fractal analysis to distinguish between normal and  

abnormal vascular structures in a human retina. Patterson [27] 

developed a statistical approach for quantifying change in the optic 

nerve head topography using a Heidelberg Retinal Tomograph 

(HRT). This was done for measuring disease progression in 

glaucoma patients. Artes [28] reported on the temporal relationship 

between visual field and optic disc changes in glaucoma patients. 

Bursell [29] investigated the difference in blood flow changes 

between insulin-dependent diabetes mellitus (IDDM) patients 

compared to healthy patients in video fluorescein angiography. 

Narasimha [30] used longitudinal change analysis to detect non-

vascular anomalies such as exudates and microaneurysms. A 

Bayesian classifier is used to detect changes in image colour. A 

“redness” increase indicates the appearance of microaneurysms. 

Similarly, an increase in white or yellow indicates the appearance 

of exudates. While the problem of analysing “change” and 

“progression” of disease has been studied in the literature, to the 

best of our knowledge, the combination of a spatial pair of retinal 

images for the improvement of detection of MAs has not yet been 

explored. 

The objectives of the present work are: 1) To present a novel 

method for combining information from two views of the retina 

(optic disc centered and fovea centered) and 2) Evaluate this 

method using a dataset of spatial image pairs. Following this 

introductory section, the methodology of the proposed method will 

be explained. Section 3 will discuss the details of the dataset and 

the methods employed for evaluating the proposed method. 

Results will be presented and discussed in Section 4. Final remarks 

and conclusions will be presented in Section 5. 

2. Methodology 

2.1. Method Overview 

Figure 2 illustrates the overview of the proposed method. A 

way to compare MA candidate detection using the combined 

image versus the 2 singular images from the same patient was 

needed. A previous method [1] was used for the detection of 

candidates and measuring the probability of each candidate being 

true or spurious. The method was explained in detail in [1] and will 

be summarised in the following paragraph. 

The previous method worked on the detection of 

microaneurysms from a single colour fundus image. The method 

was based on 3 stages: Preprocessing, MA candidate detection and 

classification. In the preprocessing phases, noise removal was 

performed and the image was corrected for non-uniform 

illumination by subtracting it from an estimate of the background. 

Salt and pepper noise was also removed during this stage. The 

vessel structure was removed from the image since vessel cross 

sections usually cause many false positive candidate detections. In 

the MA candidate detection phase a Gaussian filter response was 

thresholded in order to receive a set of potential candidates. Each 

candidate was region grown in order to enhance the shape of the 

candidates (to match the original shape in the image). Finally, 

during the classification stage, each region grown candidate was 

assigned a probability 𝑝  between 0 and 1 representing the 

classifier’s confidence in it being a true candidate or not. Each 

probability 𝑝 can be thresholded at an operating point 𝛼 to produce 

 𝑡 such that: 

𝑡 = {
1 if 𝑝 > 𝛼

      0 otherwise 
 

Where t = 1 means that the corresponding candidate will be 

classified as true and t = 0 means it will be classified as spurious 

and removed from the candidates set. 

The previous method has been adapted to work on 2 images of 

different spatial views. As shown in Figure 2, the 2 images are run 

through the algorithm as normal. This produces a set of 2 scores 

(scores(1) and scores(2)). The intention is to combine these 2 scores 

together. However, before fusing the scores a way to find 

correspondences between candidates is needed. Therefore the 

images need to be aligned first (Image Registration) and then 

finding a match between corresponding candidates is needed 

(Candidates Matching). Each of the matched candidate’s scores 

can then be combined to produce a single set of scores for both 

images. This combination should increase the confidence in some 

true MA candidates, and will hence improve the final algorithm 

after the final scores are thresholded with an operating point 𝛼. 

In the following sections the Image Registration, Candidates, 

Matching and Fusion of Scores stages are described in greater 

detail.  

2.2. Image Registration 

http://www.astesj.com/
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Image registration is the process of aligning two images so that 

their corresponding pixels lie in the same space. One image is 

considered to be the reference image and the other image (known 

as the moving image) is transformed to be aligned to the reference 

image. A global transformation model was used which means that 

a single transformation was applied across the entire moving image. 

This has the advantage of simplicity and efficiency, but may not 

be as accurate as localised registration techniques. Since the goal 

of this paper was to introduce a proof of concept with regards to 

combining spatial information during microaneurysm detection, 

the accuracy achieved was sufficient for this purpose. More 

accurate registration techniques will be investigated in future work. 

 

Figure 2. An overview of the proposed methodology. 

A manual registration technique was employed where 

corresponding ‘control points’ were selected from each image. 

These control points were used to solve the global transformation 

model equations and find the transformation parameters (Figure 3). 

Corresponding points were annotated in each pair of images (as 

specified by Table 1). 

 

Figure 3. The manual control point selection process for the image 

registration phase. 

Based on the literature, four transformation models were 

evaluated: These include Similarity [31], Affine [32], [33], 

Polynomial [34], [35] and RADIC [36], [37].  

The transformation model parameters were estimated using the 

six control points that were manually selected on each pair of 

images. These control points were picked on each image’s vessel 

cross sections since it was easiest to identify corresponding points 

at these areas. Figure 4 shows samples of checkerboard patches 

selected at random from the registered image pairs. In general it 

was difficult to identify the most accurately registered model by 

visual observation of the patches alone since there was an observed 

discrepancy in performance across rows.  

In other words, none of the transformation models perfectly 

aligns the vessels in all four patches. Hence, a more objective 

method for selecting the model was needed. This will be discussed 

in Section 3.2.1. 

Affine Polynomial RADIC Similarity 

    

    

    

    
Figure 4. Sample checkerboard patches showing registration of multiple 

transformation models. 

Table 1 The number of control points needed for each transformation model 

Transformation model No. of control points 

needed 

Similarity 2 

Affine 3 

Polynomial 6 

RADIC 3 

 

2.3. Candidates Matching 

Once both images were aligned the candidates detected from 

both images lie in the same coordinate space and hence can be 

matched by their location. In order to account for some 

inaccuracies in the registration, we used the following method to 

find matches between 2 candidates: 

Given two aligned images I1 and I2, each candidate 𝑅 detected 

in 𝐼1 needs to be matched to one of the candidates detected in 𝐼2. 

We start by finding the centre of candidate R and define a circular 

search region with radius r around R. A match is made with the 

candidate in I2 whose center lies closest to R. If no candidate in I2 

is found in this region, no match will be made. This procedure is 

repeated for all candidates in I1. In our case we defined r to be 15 

pixels which is twice the size of an average candidate in our dataset 

http://www.astesj.com/
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(Figure 5). This offers more tolerance to account for potential 

inaccuracies in the image registration. 

More formally, let P ∈ {p1, p2, … pn} be the set of candidates 

detected from the image I1  and Q ∈ {q1, q2, … qm} be the set of 

candidates detected from image I2 . Our goal is to find a set of 

correspondences C = {{pr1
, qs1

}, {pr2
, qs2

}, … {prl
, qsl

}}  (where 

ri ∈ [1. . n] and si ∈ [1. . m]) which represent the correspondences 

between these candidates. Note that some candidates would not 

have any correspondences and in this case they would not be a 

member of any set pair in C. In practice either P or Q are picked as 

a ‘reference set’ and matches are found from the other set. For 

instance, if we pick P as a reference then for each pi  we find a 

corresponding match from Q and add it to C if any exists. But we 

would not do vice versa – Q would not be used as a reference, and 

this is done for consistency, since we want to have consistent 

matches in order to make the fused scores consistent. 

 

 

 

 

 

 

Figure 6 shows an example of correspondences found after 

following the procedure above. The first row in the figure (a, b) 

shows a colour image pair while the second row in the figure (c,d) 

represents the green channel extracted from each image in the first 

row. Note that the candidates are matched from the image on the 

right column (b, d) to the image on the left column (a, c). The 

annotation numbers represent the matches from P to Q (A visual 

representation of C). Candidates annotated with “-1” in the right 

image represent a candidate that has no correspondence in the other 

image (no match found in C ). The blue circle in the figure 

represents a true candidate. It can be seen that a match has been 

found between the true candidate in (b) and its corresponding 

candidate in (a). Furthermore, it is observed that the candidate has 

a much higher contrast in the right image than it does on the left 

one. The MA candidate is still visible in the left image but it much 

more subtle. Nevertheless, a combination of information from both 

candidates will give us higher confidence that is a true candidate. 

In fact, human retinal graders often switch between both views 

of the retina when they have suspicions regarding one candidate. 

The existence of signs in both images would give graders more 

confidence about it being a microaneurysm. The process of 

matching in the proposed method attempts to replicate this. 

2.4. Scores Fusion 

Given that correspondences have been established between 

candidates and that each classifier has produced scores for each 

candidate we now need to find a final fused set of scores that 

represent a combination of information from both images. Suppose 

we have two matched candidates a and b from images I1  and I2 

respectively. Furthermore, assume that I2 is our reference image –

i.e. we are currently interested to classify the candidates in I2. We 

define the function fuse as follows (Figure 7): 

fuse(𝑎, 𝑏) = {  
max(𝑎, 𝑏) 𝑖𝑓 𝛽1 < 𝑏 < 𝛽2 

𝑏, otherwise
 

Where β1 and β2  are algorithm parameters specified between 

0 and 1. In other words, given 2 matching candidates, the 

maximum of both their scores is taken only if b lies between the 

two threshold parameters (β1 and β2). The parameters  β1 and β2 

are used to limit the number of false candidates that get their scores 

maximized in the final set. This is because maximization of scores 

should only be done for true candidates 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6. An example of the candidate detection result. a) A colour image 

from an optic disc centered image. b) The fovea centered view of (a). (c) The 

green channel image of (a). d) the green channel image of (b). The numeric 

annotations on (b) represent the result of the matching operation with a). ‘-1’ 

represents no match. Candidate #113 is a true candidate and it has been 

correctly matched in both images (b). The candidate has variable contrasts in 

both images as can be seen in (c) and (d). The matching will hence improve 

the confidence regarding this candidate.  

If a candidate in a reference image has no match in the other 

image then its score is simply copied over to the fused set (Figure 

7). Once the fused score set is computed we can perform a final 

threshold at an operating point 𝛼  to find the final set of 

classifications as described in Section 2.1. 

 

Figure 7. The method employed for the scores fusion phase. 𝜷𝟏 and 𝜷𝟐 are 

parameters set for the model. 

3. Results 

3.1. Dataset 

r 

Figure 5. An illustration of the tolerance added while matching 2 

candidates. The dashed circles represent two candidates from two views 

of the retina. It is assumed that they are misaligned due to registration 

inaccuracy. The solid circle represents a tolerance region around the first 

candidate and using this method a match is made. 
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The dataset used for evaluation consists of 40 patients imaged 

imaged as a part of UK NHS DESP. 4 images are available for 

each patient: fovea and optic disc centered images for 2 eyes. 

Hence there are 4 images per patient. The total amount of images 

is 160 images (Figure 8). The images were captured using different 

fundus cameras (including Canon 2CR, EOS and Topcon cameras) 

and hence were of different resolutions (Table 2) however they all 

had the same aspect ratio of 1.5. Moreover all the images had the 

same field of view (45 degrees).  

The images in the dataset were split into 80 images for training 

the model and 80 images for validating it. The training set 

consisted of 112 MAs and the testing set consisted of 95 MAs.  

Research Governance approval was obtained.  Images were 

pseudonymized, and no change in the clinical pathway occurred.  

 
Figure 8. An illustration of the types of images available in the spatial 

dataset. OD centered – optic disc centered. 

The same test set was used to validate both the proposed 

technique that takes into account spatial information and the 

normal technique. The classifier model was generated using the 

training set and the same model was used for both cases of with 

and without spatial information. To clarify, the same model was 

used to generate the scores for both the single-image method and 

the spatial-information method. 

Table 2 The image resolutions of the dataset. All the images had an aspect 

ratio of 1.5. 

Image Resolution Count 

3888 x 2592  24 

2592 x 1728 48 

3872 x 2592 12 

4752 x 3168 32 

4288 x 2848 20 

3504 x 2336 24 

TOTAL 160 
 

3.2. Evaluation 

In this section details regarding the evaluation of the 

registration transformation model and spatial information 

combination phases are presented. Section 3.2.1 details the 

selection of the appropriate transformation model objectively. 

Section 3.2.2 will describe the process for evaluating the spatial 

information combination and present its results. 

3.2.1. Registration 

As shown in Figure 4 it is difficult to decide which 

transformation model achieves best performance. Therefore we 

need a more objective measure of registration performance. During 

the registration we have a reference image Ir and a moving image 

Im which is transformed to be in the coordinate space of Ir. After 

the image is transformed to the coordinate space of Ir we define an 

overlapping region as all the pixel coordinates where both Ir and 

Im exist (overlap).  

The Centreline Error Measure (CEM) [36] quantifies the mean 

of the minimum distance between each pixel along the centreline 

of the reference image and the closest pixel in the moving image. 

Given a set of coordinates in the reference image that lie on its 

vessel centreline (Figure 9) and are on the overlapping region of 

the two images: V= {v1, v2, … , vN; vi ∈ (x, y)} . Similarly, let 

U={u1, u2, … , uL; uj ∈ (x, y)} be the set of points on the moving 

image that lie on its vessel centreline and belong to the overlapping 

region. Let t(p) be a transformation that transforms a point p from 

the moving image space to the reference space. We calculate the 

centreline error metric for a transformation  t(p) on the moving 

image as follows: 

𝐶𝐸𝑀 =
1

𝐿
∑ │𝑀(𝒖𝑖) −  t(𝒖𝑖)│

𝐿−1

𝑖=0

 

𝑀(𝒖𝒊) = argmin
𝑗=1..𝑁

 d(𝒗𝑗, 𝑡(𝒖𝑖))  

Where d(𝒙, 𝒚)  represents the Euclidean distance between 

coordinates 𝒙 and 𝒚. Therefore the CEM calculates the average 

distance between each point on the reference image and the nearest 

points on the registered moving image (in the overlapping region).  

A box and whisker plot of CEM values for each registration 

model in the same view was plotted in Figure 10. This plot is 

helpful to summarize the data since it shows the median value and 

the spread of the values (upper-quartile, lower quartile and the 

highest and lowest value). Based on this plot it is observed that 

while the polynomial model contains some of the lowest CEM 

values (highest accuracy) compared to other models, the 

distribution of its values also contain the highest spread (as can be 

seen by the height of the polynomial ‘box’, as well as the highest 

and lowest values). This can also be seen by the number of outliers 

in the polynomial plot. This high variance in values is also 

expressed by the standard deviation of the values as can be seen in 

Table 3. This suggests the undesirable “instability” of the 

polynomial model. We also see that the lowest standard deviation 

values are exhibited by both the affine and the similarity models 

(with the similarity model having a slightly lower standard 

deviation). Both the mean and standard deviations of these models 

are similar to each other which makes their performance 

comparable. The similarity model was selected since its values 

exhibited the lowest standard deviation. 
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Figure 9 An example of overlapping vessel centerlines for computing 

Centerline error after registration. The distance between each red pixel and 

the nearest blue pixel is computed and the average of all distances is a 

measure of alignment accuracy. 

Table 3 Centerline Error Metric (CEM) mean and standard deviation 

values for various transformation models. Std – Standard deviation. 

 Similarity Affine Polynomial RADIC 

Mean 4.40 4.50 4.74 4.49 

Std 1.51 1.536 3.82 1.536 

 

Figure 10. A Box and Whisker plot of the Centerline Error Measure (CEM) 

values 

3.2.2. Spatial information combination 

The method for fusing the scores has been discussed in Section 

2.4. In order to evaluate the effectiveness of this method we need 

a baseline method to compare against. The baselines in our case 

would be the original proposed method that detects the candidates 

from a single image [1]. The goal was to provide a direct 

comparison between the performance when spatial information is 

accounted for and when it is not accounted for. The method used 

to compare [1] with the proposed method of this paper was as 

follows: 

1- A tree ensemble model was generated using the training 

set.  

2- Features were generated from the validation set and the 

ensemble model (decision tree ensemble) was used to 

assign scores to each candidate in the 80 images of the 

validation set. 

3- In the case of the original image that used single images, 

an FROC (Free-Receiver operating) curve [38] was 

generated using these scores alone. This is the solid 

curve in Figure 11. 

4- To incorporate spatial information, each image pair 

(optic disc centered and fovea centered) had their 

corresponding candidate scores fused as explained in the 

methodology section. The fused scores were then 

evaluated collectively for each image pair and this was 

used to generate the FROC curve in Figure 11. 

The parameters for scores fusion were β1 = 0.4  and β2 =
0.95. Automating the process of selecting these parameters is left 

for future work. We see a slight increase after spatial information 

is incorporated. This increase can be captured quantitatively using 

the ROC score measure [39]. This score measures the sensitivity 

values at various x-axis intervals. The measured ROC score shows 

an increase of 0.02 after adding spatial information, which is a 2% 

increase. This increase can be explained intuitively as follows: 

Some candidates appear very subtle in the optic disc centered 

image, especially at the edge towards around the fovea region. This 

is because the retina is spherical and would get distorted during 

image acquisition. This distortion would affect the candidates 

towards the edge of the image. But these same candidates would 

appear more clearly in the Fovea centered image. This is because 

the same candidates now lie in the centre of the captured image, 

and hence their appearance will be obvious in the image. 

Intuitively, we expect the classifier to give higher scores to the 

more obvious candidates in terms of appearance. However, when 

the scores are fused, we take the maximum score of both 

candidates, and this will give us a higher score for the more subtle 

candidate that was originally given a lower score. This is why the 

FROC curve for the fused candidates shows a better performance. 

 

Figure 11 A comparison of performance between the technique applied to 

single images (solid) and after incorporating spatial information (dashed) 

Figure 12 shows this intuitive concept by showing a plot of the 

corresponding pairs of scores. The figure shows a correspondence 

of scores for the test set where “score 1” and “score 2” on the axes 

refer to the methodology scores in Figure 2. Furthermore true 

candidates are labelled in blue while false detections are labelled 

in orange. Let us assume Score 2 is the reference image and that 

the candidate scores are being matched to score 1. Since in our case 

β1 = 0.4  and β2 = 0.95  we are only interested in this cross 

section from the score 2 axis. If we look to the extreme right of the 

graph we will see some candidates that have received scores within 

this range in the score 2. These receive higher scores along the x-

axis. Hence, the maximum of both scores in the fused set will 

improve their scores and this will result in a higher FROC curve. 
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Figure 12 The scores from each corresponding spatial pair of images (these 

are the same scores as illustrated in Figure 2). True candidates are labelled in 

blue while false detections are labelled in orange. The orange line represents 

the linear line for the equation x=y. 

The additional processing involved is the time for Image 

Registration, Candidates Matching and Score Fusion. These are 

the blue ellipse stages in Figure 2. The image registration is 

dependent on the algorithm of choice. In this work since it is based 

on manual control points the overhead is the control point selection 

and the time to solve a series of equations. An automated 

registration method may require an optimisation step and hence 

more time will be required for this step [40]. Given a spatial image 

pair, let 𝑚 be the number of candidates detected in one image, and 

𝑛 be the number of candidates detected in the other image. The 

candidates matching step requires calculating the distance between 

each pairs of candidates detected in both images and hence has a 

complexity of 𝑂(𝑚 × 𝑛)  (using Big O notation). The Score 

Fusion phase will fuse the scores together from one image (𝑛 

fusions) and then fuse the scores from the other image (𝑚 fusions) 

and therefore will have a complexity of 𝑂(𝑚 + 𝑛). In practice, on 

a core i5-4590 @ 3.30GHz CPU with 8GB RAM and an SSD hard 

drive, the time per image for each of the three stages was as follows:  

1. Image Registration: 0.02 s   

2. Candidates Matching: 1.30s   

3. Scores fusion: 0.001s. 

The sum of the above timings is 1.321s. The total time for test 

dataset was computed and then the average value per image pair 

was found. The average time per pair for the entire process was 

4.141s. This means that the average overhead is about 32% of the 

time required per image (1.321s out of 4.141s). This does not take 

into account the time for manual control point selection, however, 

automated registration will be implemented in future work. 

Methods for optimising the speeds of the other stages are also left 

for future work. 

4. Conclusions and Future Work 

In this work a novel algorithm that combines spatial 

information from two views of the same retina for the purpose of 

microaneurysm (MA) detection is proposed. Most of the 

published work in the field of MA detection has been on detection 

from a single fundus image. The problem has been redefined to 

assume that two are available and the objective is to use the 

information from both to detect the microaneurysms in both 

images. The clinical application of this work would be its 

incorporation into diabetic eye screening programmes, thereby 

assisting the National Health Service in the detection of diabetic 

retinopathy. Screening in England has a recommendation of at 

least 2 images per eye so the assumption that two views are 

available would be valid in this context.  ETDRS grading [41] is 

based on a categorical variable.  Accurate counts of abnormalities 

could lead to a more refined grading/risk prediction using a 

continuous variable, or more accurate estimates of ma turnover 

that may better predict progression of disease.  Accurate 

alignment of images would be an essential prerequisite to allow 

such scoring systems to develop. We propose a method for 

aligning the images, detecting candidates, matching candidates 

from both views and then combining the information from both 

views to perform microaneurysm detection from both views 

simultaneously. The proposed method was evaluated on a 

Diabetic Eye Screening Programme dataset of 160 images that 

contained 207 microaneurysms. The combination of information 

from multiple images was shown to increase the performance in 

comparison to depending on single images only. An account of 

the computational overhead required for the combination of 

information is also presented. Some of the limitations of the 

present work are: 1) The computational overhead required for the 

additional steps of the proposed method, 2) The accuracy of the 

registration method can be improved, 3) The control point 

selection of the image registration step can be automated to reduce 

manual labour work and 4) The scores fusion stage can be further 

improved to reduce more false positives and increase true positive 

detections.  Future work will involve an exploration of other ways 

to combine information from spatial images, including multi-

image features, or mosaicing images together to enhance the 

contrast of subtle MAs. Furthermore, this concept will be 

extended to include temporal images of the same patient as well. 
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